The Chemophytostabilisation Process of Heavy Metal Polluted Soil
نویسندگان
چکیده
Industrial areas are characterised by soil degradation processes that are related primarily to the deposition of heavy metals. Areas contaminated with metals are a serious source of risk due to secondary pollutant emissions and metal leaching and migration in the soil profile and into the groundwater. Consequently, the optimal solution for these areas is to apply methods of remediation that create conditions for the restoration of plant cover and ensure the protection of groundwater against pollution. Remediation activities that are applied to large-scale areas contaminated with heavy metals should mainly focus on decreasing the degree of metal mobility in the soil profile and metal bioavailability to levels that are not phytotoxic. Chemophytostabilisation is a process in which soil amendments and plants are used to immobilise metals. The main objective of this research was to investigate the effects of different doses of organic amendments (after aerobic sewage sludge digestion in the food industry) and inorganic amendments (lime, superphosphate, and potassium phosphate) on changes in the metals fractions in soils contaminated with Cd, Pb and Zn during phytostabilisation. In this study, the contaminated soil was amended with sewage sludge and inorganic amendments and seeded with grass (tall fescue) to increase the degree of immobilisation of the studied metals. The contaminated soil was collected from the area surrounding a zinc smelter in the Silesia region of Poland (pH 5.5, Cd 12 mg kg-1, Pb 1100 mg kg-1, Zn 700 mg kg-1). A plant growth experiment was conducted in a growth chamber for 5 months. Before and after plant growth, soil subsamples were subjected to chemical and physical analyses. To determine the fractions of the elements, a sequential extraction method was used according to Zeien and Brümmer. Research confirmed that the most important impacts on the Zn, Cd and Pb fractions included the combined application of sewage sludge from the food industry and the addition of lime and potassium phosphate. Certain doses of inorganic additives decreased the easily exchangeable fraction from 50% to 1%. The addition of sewage sludge caused a decrease in fraction I for Cd and Pb. In combination with the use of inorganic additives, a mobile fraction was not detected and an easily mobilisable fraction was reduced by half. For certain combinations of metals, the concentrations were detected up to a few percent. The application of sewage sludge resulted in a slight decrease in a mobile (water soluble and easily exchangeable metals) fraction of Zn, but when inorganic additives were applied, this fraction was not detected. The highest degree of immobilisation of the tested heavy metals relative to the control was achieved when using both sewage sludge and inorganic additives at an experimentally determined dose. The sequential extraction results confirmed this result. In addition, the results proved that the use of the phytostabilisation process on contaminated soils should be supported.
منابع مشابه
Heavy Metals in Wetland Soil of Greater Dhaka District, Bangladesh
The current paper determines heavy metals in sediments of six freshwater wetlands of greater Dhaka district from November 1999 to September 2000. The sampling took place in summer, rainy season, and winter, wherein for each season five soil samples were collected from the wetland at a depth of 0 – 15 cm. To assess the status of heavy metal pollution in the sediments, geo-accumulation factor (Ig...
متن کاملHeavy Metals in Wetland Soil of Greater Dhaka District, Bangladesh
The current paper determines heavy metals in sediments of six freshwater wetlands of greater Dhaka district from November 1999 to September 2000. The sampling took place in summer, rainy season, and winter, wherein for each season five soil samples were collected from the wetland at a depth of 0 – 15 cm. To assess the status of heavy metal pollution in the sediments, geo-accumulation factor (Ig...
متن کاملHeavy Metals Extraction Potential of Sunflower (Helianthus annuus) and Canola (Brassica napus)
Phytoextraction is a remediation technology that uses plants to remove heavy metals from soil. The success of a phytoextraction process depends on adequate plant yield (aerial parts) and high metal concentrations in plant shoots. A pot experiment was conducted to investigate the combination effects of plants [sunflower (Helianthus annuus) and canola (Brassica napus)] with soil treatments (manur...
متن کاملStudy of the increase in phytoremediation efficiency in a nickel polluted soil by the usage of native bacteria: Bacillus safensis FO.036b and Micrococcus roseus M2
Nickel (Ni) is a heavy metal and soil pollutant but existence of small amount of it as a metallic part of urease enzyme in the plants is necessary. Remediation of spots contaminated with heavy metals is particularly challenging. Phytoremediation, the use of plants for environmental restoration, is a novel clean up technology. In this study, five levels of nickel [control (Ni0), Ni125, Ni250, Ni...
متن کاملGrowth characteristics and response of wheat to cadmium, nickel and magnesium sorption affected by zeolite in soil polluted with armaments
The presence of large heavy metal concentrations in soil polluted with chemical weapons causes serious operational restrictions against cultivation of agricultural crops like wheat. To solve this problem, the usage of zeolite has been proposed as one of the most efficient practical approaches. The main objective of this research is the investigation of the influence of natural Iranian zeolite o...
متن کامل